Non-invasive fibrosis scores as predictors for clinical events in obesity: a longitudinal study

Maximilian Jara¹, Quentin M. Anstee^{2,3}, Tina L. Berentzen¹, Louise M. Nitze¹, Mette S. Kjær¹, Kamal K. Mangla¹, Jens M. Tarp¹, <u>Joshua Neuman</u>,^{4*} Kamlesh Khunti⁵

¹Novo Nordisk A/S, Søborg, Denmark; ²Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; ³Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK; ⁴Novo Nordisk Inc., New Jersey, USA; ⁵Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Protocol number: 21_000474 - 'Non-invasive tests as prognostic biomarkers of liver events, cardiovascular events and all-cause mortality in individuals with obesity and/or type 2 diabetes living in the UK: a longitudinal cohort study'.

This study was sponsored by Novo Nordisk A/S.

Originally presented at Obesity Week® 2022 (The Obesity Society), November 1–4, San Diego, CA, USA. Jara M, et al. Poster 467. Jara M, et al. Presented at Digestive Disease Week® (DDW) 2023, May 6–9, Chicago, IL, USA.

^{*}Author added only for presentation purposes.

Disclosures

• Dr Joshua Neuman is a full-time employee and shareholder of Novo Nordisk.

Introduction

Many patients with NASH have obesity. NASH is associated with life-threatening liver-related complications, CVD, and increased liver-specific and all-cause mortality 5,6

Biopsy-confirmed liver fibrosis is an important predictor of these severe outcomes; however, biopsies are not scalable for use outside of specialist practice⁷

Recent clinical guidelines in NASH^{7,8} recommend using FIB-4 to screen patients with obesity to identify those at risk for clinically significant fibrosis

^{1.} Younossi Z, et al. Hepatology 2016;64:73-84; 2. Ascha MS, et al. Hepatology 2010;51:1972-78; 3. Ratziu V, et al. J Hepatol 2010;53:372-84;

^{4.} Ekstedt M, et al. Hepatology 2015;61:1547–54; 5. Younossi Z, et al. Hepatology 2011;53:1874–82; 6. Söderberg C, et al. Hepatology 2010;51:595–602;

^{7.} Kanwal F, et al. Gastroenterology 2021;161:1657-69; 8. European Association for the Study of the Liver. J Hepatol 2021;75:659-68.

Objective

This longitudinal cohort study investigated the prognostic potential of six non-invasive scores for NASH-related clinical outcomes in patients with obesity (BMI \geq 30 kg/m²) seen in routine general practice in the UK

Based on recent guideline recommendations to use FIB-4 to identify people at risk for clinically significant fibrosis, ^{1,2} this presentation focuses on FIB-4

Methods

Study design

- Longitudinal, non-interventional, observational cohort study
 - Country: UK
 - Study period: 2001–2020
- Patients were followed from inclusion date* until time of first clinical event, database migration, 10 years after inclusion or 1 January 2020 (whichever came first)
- FIB-4 at inclusion was categorized as low (<1.30), indeterminate (1.30-2.67) or high (>2.67) risk

Data sources

- Clinical Practice Research Datalink (CPRD) is a UK Government real-world research service
- Contains de-identified patient data from a network of general practitioners across the UK
- General practitioner medical records are linked to two other data sources in the current study: Hospital Episodes Statistics (HES) and Office for National Statistics (ONS) death registration data

Population

- Adults aged ≥18 years with obesity (BMI ≥30 kg/m²)
- ≥1 FIB-4 score calculable from CPRD[†]
- No record of alcohol-related and/or other chronic liver disease registered in HES
- No prescriptions of drugs inducing liver disease registered in CPRD

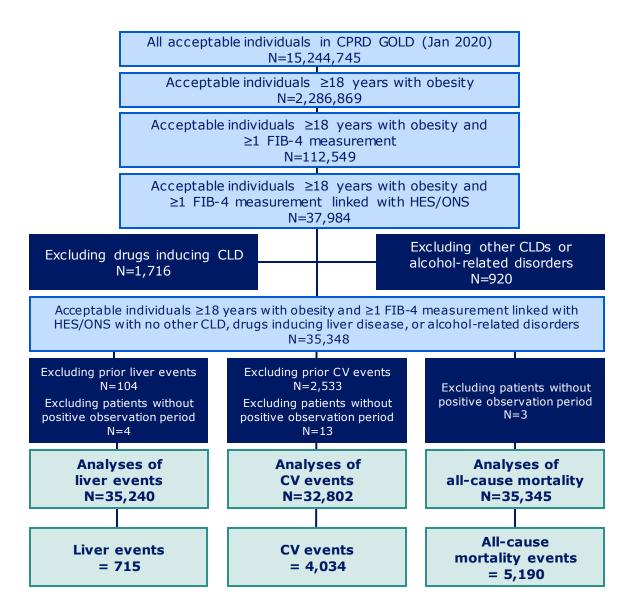
CPRD, Clinical Practice Research Datalink; FIB-4, Fibrosis-4 Index; HES, Hospital Episode Statistics; ONS, Office for National Statistics.

^{*}Date of first FIB4 measurement after 1 January 2001 and all eligibility criteria met for the first time; †FIB4 score was not taken directly from CPRD, but was calculated using data available from CPRD.

Methods

Endpoints

- Time to first liver event (liverrelated hospitalisation or death)
 - Time to first CV event (CVrelated hospitalization or death)
 - Time to death of any cause


Statistical analysis*

- Cumulative incidence functions were calculated with the Aalen-Johansen calculator
- Hazard ratios estimated using Cox proportional hazards models with calendar time as underlying timescale

^{*}Although FIB-4 is the focus of this presentation, separate statistical analyses were performed for each non-invasive score. CV, cardiovascular; FIB-4, Fibrosis-4 Index.

Patient population

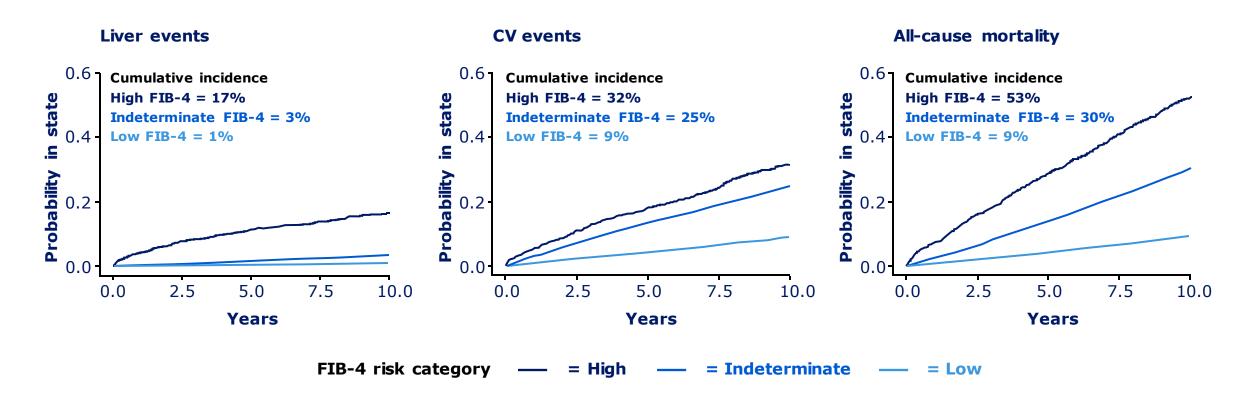
- Of the 2,286,869 adults with obesity in the CPRD, 112,549 (4.9%) had available measures for FIB-4 calculation and a total of 35,348 patients were included in the study
- Median follow-up was 3,652 days (10 years)

CLD, chronic liver disease; CPRD, Clinical Practice Research Datalink; CV, cardiovascular; FIB4, Fibrosis-4 Index; HES, Hospital Episode Statistics; ONS, Office of National Statistics.

Baseline characteristics

Baseline parameters	FIB-4 low (N=24,971)	FIB-4 indeterminate (N=9,178)	FIB-4 high (N=1,199)
Patient characteristics			
Female, %	60	48	40
Age, years	50.2 (25.8, 73.1)	68.6 (48.9, 84.9)	71.3 (48.4, 88.5)
BMI, kg/m ²	33.4 (30.1, 45.2)	32.5 (30.0, 42.1)	32.4 (30.0, 42.6)
Type 2 diabetes, %	25	37	41
Clinical/laboratory parameters			
AST, U/L	23 (15, 43)	26 (17, 64)	41 (20, 212)
ALT, U/L	27 (13, 73)	26 (12, 84)	33 (11, 188)
HbA _{1c} *, %	7.1 (5.4, 10.9)	6.9 (5.5, 10.2)	6.8 (5.5, 10.0)
Creatinine, mg/dL	0.9 (0.6, 1.3)	1.0 (0.7, 1.6)	1.0 (0.7, 1.9)
HDL*, mg/dL	46 (31, 73)	48 (31, 77)	46 (27, 81)
LDL*, mg/dL	g/dL 120 (62, 190)		97 (43, 174)
Triglycerides*, mg/dL	142 (66, 354)	142 (71, 328)	133 (62, 328)

All values are median (5^{th} percentile, 95^{th} percentile), unless otherwise stated.


^{*}Missing for more than 20% of the population.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; FIB-4, Fibrosis-4 Index; HbA $_{1c}$, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein.

Baseline characteristics

Baseline parameters	FIB-4 low (N=24,971)	FIB-4 indeterminate (N=9,178)	FIB-4 high (N=1,199)
Comorbidities			
Hospitalization for:			
Hypertension, %	43	68	68
Dyslipidemia, %	21	34	30
Chronic kidney disease, %	7	19	22
Medication use			
Anti-hypertensive agent, %	22	45	50
Metformin, %	12	15	17
Statin, %	23	46	44

Cumulative incidence (over 10 years) for liver events, CV events, and mortality according to FIB-4

Percentage risks are for 10 years' follow-up. Event risks plotted as Aalen-Johansen cumulative incidence functions, with all-cause mortality included as a competing risk factor in plots of liver and CV events.

CV, cardiovascular; FIB-4, Fibrosis-4 Index.

Hazard ratios for liver events, CV events, and mortality according to FIB-4 in patients with obesity

	Patients (n)	Events (n)		Crude HR (95% CI)	Adjusted (age and sex) HR (95% CI)	
Liver events			Liver	Liver events		
FIB-4 low	24,932	255		1	1	
FIB-4 indeterminate	9,144	279		3.32 (2.80, 3.93)	2.86 (2.35, 3.48)	
FIB-4 high	1,164	181		21.29 (17.58, 25.77)	18.77 (15.05, 23.40)	
CV events			CV ev	CV events		
FIB-4 low	23,770	1,921		1	1	
FIB-4 indeterminate	8,025	1,822		3.21 (3.01, 3.42)	1.07 (1.00, 1.15)	
FIB-4 high	1,007	291		4.90 (4.33, 5.34)	1.37 (1.20, 1.57)	
All-cause mortality		All-ca	All-cause mortality			
FIB-4 low	24,968	2,100		1	1	
FIB-4 indeterminate	9,178	2,517		3.62 (3.42, 3.84)	1.03 (0.96, 1.10)	
FIB-4 high	1,199	573		7.73 (7.05, 8.48)	1.71 (1.55, 1.89)	

Cox proportional hazards models, either unadjusted crude values or adjusted for age and sex, with calendar time as the timescale. FIB-4 was categorized as low (<1.30), indeterminate (1.30–2.67), or high (>2.67). CI, confidence interval; CV, cardiovascular; FIB-4, Fibrosis-4 Index; HR, hazard ratio.

Liver events, CV events, and mortality according to FIB-4 in patients with obesity and available FIB-4 and Framingham CV risk scores*

	Patients (n)	Events (n)		Crude HR (95% CI)	Adjusted (age and sex) HR (95% CI)	
Liver events			Liver ev	Liver events		
FIB-4 low	10,715	112		1	1	
FIB-4 indeterminate	3,730	122		3.28 (2.54, 4.24)	3.37 (2.54, 4.48)	
FIB-4 high	398	81		24.91 (18.71, 33.17)	25.46 (18.58, 34.88)	
CV events	CV events			CV events		
FIB-4 low	10,015	908		1	1	
FIB-4 indeterminate	3,285	582		2.09 (1.88, 2.32)	1.14 (1.02, 1.28)	
FIB-4 high	365	67		2.46 (1.92, 3.15)	1.26 (0.98, 1.62)	
All-cause mortality			All-caus	All-cause mortality		
FIB-4 low	10,732	846		1	1	
FIB-4 indeterminate	3,748	656		2.32 (2.09, 2.57)	1.15 (1.03, 1.28)	
FIB-4 high	413	136		5.13 (4.28, 6.15)	2.38 (1.97, 2.87)	

^{*}Adjustment for Framingham CV risk score was at the time of FIB4 measurement. CI, confidence interval; CV, cardiovascular; FIB-4, Fibrosis-4 Index; HR, hazard ratio.

Conclusions

Hazard ratios for clinical events were greater with high versus low baseline FIB-4. This was also the case after additional adjustment for baseline Framingham CV risk score

These findings support recent guidelines on the use of non-invasive tests in patients at risk of liver fibrosis^{1,2} and integration of FIB-4 into the evaluation of patients with obesity in clinical practice

This study provides valuable insights into the prognostic potential of FIB-4 in a broad population of patients with obesity